Our group is always interested in new members to join our team of high-quality researchers and students. A number of opportunities exist for undergraduate, masters, PhD and post doctoral research positions.

New PDRA Position – Methane Oxidation for GHG Removal

We have an exciting new position for a Research Assistant/Associate in our group to work on the fundamental kinetics of low concentration methane oxidation via catalysis, photocatalysis and electrochemical conversion to remove atmospheric greenhouse gases. This is a new multi-disciplinary project linking many fields of physical chemistry and engineering.

Adam 2021 mug (3)Adam Boies
University of Minnesota
Ph.D. Mechanical Engineering, 2010
University of Missouri Science and Technology
M.S. Mechanical Engineering, 2004
B.S. Mechanical Engineering, 2003


MollyCertifiedMolly Haugen,

My work within the Center for Sustainable Road Freight is to examine noxious and climate pollutants from heavy goods vehicles. A current focus is interpreting results from a variety of research projects within the Boies Lab. These projects include evaluating gaseous emissions collected with low cost sensors from individual heavy-duty vehicles which provide useful engine emission maps, and a separate project analysing correlations between low-cost and high-end instruments in their ability to measure particles in a laboratory setting as well as in ambient conditions.

MohsenMohsen Kazemimanesh,

My primary research is on characterization of airborne non-exhaust particles from brake and tyre wear in vehicles. Non-exhaust emissions contribute to ~50% of traffic-related particle emissions and this fraction is expected to rise in the future with electrification of vehicles. My research will shed light on the size, morphology, and chemical composition of non-exhaust particles and their source apportionment in urban air pollution. I am also involved in other areas of research, such as aerosol instrument development and aerosol characterization of materials for energy storage applications. My past research during graduate studies at the University of Alberta, Canada, focused on a range of topics in aerosol and combustion sciences, from gas flaring emissions and soot formation in flames to lab-scale soot generators and aircraft emissions.

Akshay Kale Akshay Kale,

The objective of my project is to develop and characterise engineering systems capable of generating a desired number concentration of charged aerosol particulate matter. The state of art commercial technologies available for generating charged aerosols exhibit a strong dependence of the output number concentration of aerosol particles on the input number concentrations. Producing a fixed number concentration of charged aerosols remains a currently unmet challenge, which can lead to breakthrough applications across transport and energy sectors. Funded by the Germany-based non-profit initiative “AiF Projekt GmbH” (, this project is a collaborative effort between the University of Cambridge and Catalytic Instruments GMBH, Germany ( My other interests lie in developing MEMS and NEMS devices for healthcare applications, which I have been actively pursuing since my PhD studies at Clemson University, USA.

Collaborating Researchers

Fiona_SmailFiona Smail,

Our research is aimed at scale-up production of carbon nanotube (CNT) materials from a floating catalyst chemical vapor deposition (FCCVD) process. Industrial production of CNTs from a gas-phase aerosol process, requires reactor scale-up and process densification. My work seeks to scale-up CNT production while controlling material chemistry. This work is a part of a larger Advanced Nanotube Application and Material initiative,

Anna SAnna Schroeder,

Anna works on the EPSCR Grand Challenge project MAGIC (Managing Air for Greener Inner Cities – ) which aims to develop an integrated suite of models that allows city planners to design more sustainable cities. Her research involves using Computer Vision to accurately extract vehicle trajectories from video footage which are key to accurately model vehicle emissions. She is particularly interested in the impact of vehicle emissions on air pollution and potential mitigation measures and has led a field study in London to investigate the microscale impacts of changes of traffic signal timings on air pollution.

PhD Students

LironIssmanLiron Issman,

I’m investigating new methods to enhance the productivity of floating catalyst chemical vapor deposition (FCCVD) process mainly by incorporating a plasma enhanced (PE) system into the current process. I also wish to develop an in-situ technique to achieve better alignment of the CNT fibrils during  the CNT nucleation stage by an intelligent  implantation of a magnetic and/or electric field. Better alignment of the CNTs within the non-woven CNT mat or CNT fiber should immensely improve the CNT product macro-scale properties. By collaboration with the nanomanufacturing group of Dr. Michael De Volder I will also seek ways to utilize CNT products, produced by the FCCVD process,  in energy related applications such as batteries or supercapacitors.

MauritsHouckMaurits Houck,

I am working on novel anode materials for fast charging Li-ion batteries. To improve cell performance, a deep understanding of the underlying thermodynamic, kinetic, and mass transport processes as well as the crystal structures is needed. A great way to do this and to find the charge limiting process, is interpretation of large amounts of electrochemical, XRD, and SEM data, via physics-based models such as (extended) Newman models in COMSOL. For commercial energy density application of the materials, improved characterisation and modelling of the heterogeneous electrode microstructure is needed as well. I am doing this work in collaboration with Echion Technologies Ltd, a spinoff company of the research group, that is developing this new type of fast charging battery material. Ultimately, this material could make it possible to charge your electric car in less than 5 minutes, while also having a better energy density, lifetime and safety!

XiaoyuXiaoyu Qiu,

My research focuses on the underlying mechanisms behind the formation of gas-phase synthesized carbon nanotube (CNT) aerogels within a floating-catalyst chemical vapour deposition. I wish to obtain a detailed formulation of the actual aggregation in CNT aerosols by meso-scale modelling from the nanometer to millimeter length scales using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). I’m currently investigating the entropy change during particle coalescence with LAMMPS.

Mabel 2020Mable Qiao,
My research project focuses on the in-flight measurements of CNTs in an FCCVD process to determine CNT growth kinetics, with the aim to help understand the physical fundamentals governing the CNT synthesis process. I also wish to experiment with different particle measurement techniques used for CNTs, such as the Aerodynamic Aerosol Classifier (AAC) and the Centrifugal Particle Mass Analyser (CPMA), as reliable in-flight continuous measurement methods could greatly accelerate future research efforts in this area.

Cyprien JourdainCyprien Jourdain,

My research project focuses on the in-flight measurement of nanoparticles to provide reliable surface area, volume, and subsequent morphological properties of fractal aggregates. Joint experimental and numerical efforts are sought to shed light on adsorption, liquid partitioning, and heterogeneous condensation mechanisms, all driving particle growth in nature and many industrial fields. Computing techniques, including Molecular Dynamics (MD) and Computational Fluid Dynamics (CFD), are used to investigate the above multi-scale phenomena. An experimental chamber will be designed to grow in-flight particles and will be coupled with by a range of aerosol instrumentation for real-time measurements.

Michael GlerumMichael Glerum,
My research is focused on the development of a pseudo-packed bed reactor for carbon nanotube (CNT) synthesis. The project aims to develop a higher reaction density reactor to make the synthesis process of CNTs more efficient, versatile and scalable. The project is coupled with the investigation of the kinetic pathways between the catalyst and the species to more clearly understand the current limitations in the floating catalyst chemical vapour deposition reactor (FC-CVD). The knowledge of the chemical and physical limitations of the FC-CVD reactor will ultimately aid in the design of an optimised synthesis route in the packed bed reactor. In addition,  my project involves the infiltration of the CNT mat during the nanotubes agglomeration within the reactor; the purpose of the infiltration is to develop multifunctional CNT mats and fibres for the implementation across a myriad of applications.

Manar AlmazroueiManar Almazrouei,
I am working on producing improved materials for high power density lithium-ion battery by spray drying process. The focus is on multi-element layered oxide materials such as nickel manganese cobalt oxide (NMC). Spray drying produces microscale particles by a scalable and continuous process. The influence of the size, morphology, structure and surface chemistry of the synthesised microparticles on the battery performance and stability will be measured experimentally.

Kelvin Risby,
Design and analysis of a monodisperse particle generator.

Master’s Students

Shaamrit BalendraShaamrit Balendra, 

I am currently developing a novel ultrasmall water condensation particle counter (UWCPC) that is capable of detecting nanometer particles (NP). The device will be designed in terms of compactness, cost, low power consumption in addition to multi-hour data gathering capability, suited for both indoor/outdoor settings producing safe non-toxic fumes in respiratory zones. The work involves a coupled iterative approach of parametric design optimisation through COMSOL Multiphysics, rapid prototyping using 3D printing technology, and experimental testing of the device through custom made rigs and aerosol instrumentation.

Nasser Chouwdhury, MRes, Creating CNTs from Biomass

Alexander Ward, MRes, Novel CNT Filtration Devices

Ben Wood, MRes, Design of a Hybrid Energy Laboratory

Previous Group Members

Anna Schroeder, PDRA 2018-2021, Managing Air for Greener Inner Cities –, micro-scale emissions modelling and measurement.

Jason Allen, MRes 2020-2021

Julie Pongetti, MRes 2020-2021

Adam Wronski, MRes 2020-2021

Tyler Johnson, PhD 2017-2021, Theory and Applications of the Aerodynamic Aerosol Classifier

Brian Graves, PhD 2016-2020, Synthesis of Carbon Nanotube Materials from a Microwave Plasma

Xiao Zhang, PDRA 2017-2020, Faculty at Beijing Institute of Technology

George Giannopoulos, PDRA 2018-2020, Faculty at University College London

Lee Gordon, MPhil 2019-2020

Cameron McKie, MPhil 2019-2020

Islam Abdelkader, MPhil 2019-2020

Kai Tan, MRes 2019-2020

Steven Ibrahim, MRes 2019-2020

Andres Gonzalez, PhD 2015-2020

Robert Nishida, PhD 2015-2019

Cathy Zhou, MRes 2018-2019

Josh Hassim, MRes 2018-2019

Jamie Blaiklock, 2018-2019

Mustafiz Raman, Post Doctoral Researcher 2018-2019,

Nick Kateris, MEng 2017-2018

Tom Stakes, MEng 2017-2018

Khuzaimah Saeed, MEng 2017-2018

Krisna Dharma, MEng 2017-2018

Larkin Sayre, MPhil 2017-2018

Naomi Mowat-Amiet, MPhil 2017-2018

Justin Bishop, Post Doctoral Researcher 2012-2017

Jean De la Verpilliere, 2013-2017, CEO

Christian Hoecker, PhD 2013-2017

Maxime Duvieusart, MPhil 2016-2017

Nihal El-Fahim, MPhil 2016-2017

Mariam Ibrahim, MPhil 2016-2017

Wesley Blank, Undergrad Researcher Summer 2016

Nicholas Kateris, Undergrad Researcher Summer 2016

Richard Findley, MPhil 2015-2016

Marc Stetter, PhD and Researcher 2010-2015,

Uven Chong, PhD 2010-2014

Niall Martin, PhD 2012-2015

Howard Saffey, MPhil 2013-2014

Mark Bajada, MPhil 2013-2014

Wojciech Nodzynski, MEng 2013-2014

Jacob Swanson, Researcher 2012-2013,

Xiou Yan, Researcher 2011-2013,

Nurul Alam, Researcher 2012-2013

George Harris, MPhil 2012-2013

Laura Pillari, MPhil 2012-2013

Nathan Brakely, MPhil 2012-2013

Joseph Ritchie, 2011-2012

%d bloggers like this: